Abstract
Earthquake catalogs typically report multiple magnitude types, which makes it difficult to perform comprehensive statistical analysis. Internationally, moment magnitude is the preferred reference scale for unification. This study establishes empirical relationships between MW and two magnitudes used in Cuba: (1) amplitude-based ML and (2) coda-duration-based MC, as computed by the National Seismological Service of Cuba for earthquakes recorded from 1998–2022. We evaluated linear and nonlinear regression models, including those accounting for uncertainties in the independent variable (ML or MC). Model parameters were estimated via standard least squares, orthogonal distance least squares, and higher-order moments regression. Using the Akaike (AIC) and Schwarz (BIC) information criteria, we identified the segmented model using orthogonal distance regression (ODR) as most recommended for both MW–ML and MW–MC relationships. These results provide a robust basis for magnitude conversions in Cuban catalog homogenization and seismicity analysis.
References
[1] P. Bormann, S. Wendt, and D. DiGiacomo, Introduction to seismological instrumentation, in New Manual of Seismological Observatory Practice 2 (NMSOP-2) (GFZ German Research Centre for Geosciences, Potsdam, 2013).
[2] R. Das, H. R. Wason, and M. L. Sharma, J. Asian Earth Sci. 50, 44 (2012).
[3] P. Gasperini, B. Lolli, and S. Castellaro, Bull. Seismol. Soc. Am. 105, 1787 (2015).
[4] R. Kumar, R. B. S. Yadav, and S. Castellaro, Seismol. Res. Lett. 91, 3195 (2020).
[5] E. M. Scordilis, J. Seismol. 10, 225 (2006).
[6] M. Wyss and R. E. Habermann, Bull. Seismol. Soc. Am. 72, 1651 (1982).
[7] L. Álvarez and V. I. Buné, Fizika Zemli 10, 54 (1977).
[8] L. Álvarez, R. S. Mijáilova, E. O. Vorobiova, T. J. Chuy Rodríguez, G. N. Zhakirdzhanova, E. R. Pérez, L. M. Rodiónova, H. Álvarez, and K. M. Mirzoev, Sismicidad de Cuba y Estructura de la Corteza en el Caribe, 1st ed. (Academia, La Habana, 2000).
[9] M. Villalón-Semanat and R. Palau-Clares, Min. Geol. 34, 171 (2018),
[10] V. Kossobokov, A. Mostinskiy, and P. Shebalin, Earthquake Catalog Processing (ECP) Package (2008).
[11] Castellaro, F. Mulargia, and Y. Y. Kagan, Geophys. J. Int. 165, 913 (2006).
[12] D. Di Giacomo, I. Bondár, D. A. Storchak, E. R. Engdahl, P. Bormann, and J. Harris, Phys. Earth Planet. Inter. 239, 33 (2015).
[13] J. Holt, Addressing Uncertainty in Earthquake Magnitudes Commonly Used in Modern Seismic Hazard Assessment, Ph.D. thesis, University of Liverpool (2019).
[14] F. T. Kadirioğlu and R. F. Kartal, Turk. J. Earth Sci. 25, 300 (2016).
[15] H. Kanamori, Tectonophysics 93, 185 (1983).
[16] L. Malagnini and I. Munafò, Bull. Seismol. Soc. Am. 108, 1018 (2018).
[17] G. A. Weatherill, M. Pagani, and J. Garcia, Geophys. J. Int. 3, 206 (2016).
[18] B. Edwards, B. Allmann, D. Fäh, and J. Clinton, Geophys. J. Int. 183, 407 (2010).
[19] B. Gutenberg and C. Richter, Ann. Geofis. 9, 1 (1956).
[20] E. Oros, A. Placinta, and I. Moldovan, Rom. Rep. Phys. 73, 706 (2021).
[21] R. Sawires, M. A. Santoyo, J. A. Peláez, and R. D. Corona Fernández, Sci. Data 6, 241 (2019).
[22] D. Stromeyer, G. Grünthal, and R. Wahlström, J. Seismol. 8, 143 (2004).
[23] Grigoratos, V. Poggi, L. Danciu, and R. Monteiro, Seismica 2, 402 (2023).
[24] B. Lolli, P. Gasperini, and G. Vannucci, Geophys. J. Int. 199, 805 (2014).
[25] M. Shahabuddin and W. Kumar Mohanty, Seismol. Res. Lett. 96, 2603 (2025).
[26] D. A. Storchak, D. Di Giacomo, I. Bondár, E. R. Engdahl, J. Harris, W. H. Lee, A. Villaseñor, and P. Bormann, Seismol. Res. Lett. 84, 810 (2013).
[27] J. Cheng, Y. Rong, H. Magistrale, G. Chen, and X. Xu, Bull. Seismol. Soc. Am. 107, 2490 (2017).
[28] B. P. Goertz-Allmann, B. Edwards, F. Bethmann, N. Deichmann, J. Clinton, D. Fäh, and D. Giardini, Bull. Seismol. Soc. Am. 101, 3088 (2011).
[29] P. T. Boggs and J. E. Rogers, NISTIR 89--4197 (National Institute of Standards and Technology, 1989).
[30] J. Gillard, Commun. Stat. - Theory Methods 43, 3208 (2014).
[31] H. Akaike, Selected Papers of Hirotugu Akaike (Springer, New York, 1998).
[32] G. Schwarz, Ann. Stat. 6, 461 (1978).
[33] G. Casella and R. L. Berger, Statistical Inference, 2nd ed. (Duxbury Press, Pacific Grove, 2002).
[34] K. P. Burnham and D. R. Anderson, Eds., Model Selection and Multimodel Inference: A Practical Information-Theoretic Approach, 2nd ed. (Springer, New York, 2002).
[35] J. H. Bolin, Regression Analysis in R: A Comprehensive View for the Social Sciences, 1st ed. (Taylor & Francis, Boca Raton, 2023).
[36] E.-J. Wagenmakers and S. Farrell, Psychon. Bull. Rev. 11, 192 (2004).
[37] R Core Team, R: A Language and Environment for Statistical Computing, R Foundation for Statistical Computing, 2023.
[38] A.-N. Spiess, onls: Orthogonal Nonlinear Least-Squares Regression (2022)
[39] H. Wickham, ggplot2: Elegant Graphics for Data Analysis, 2nd ed. (Springer, Houston, 2016).
[40] N. Deichmann, Bull. Seismol. Soc. Am. 107, 505 (2017).

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Copyright (c) 2025 Cuban Physical Society & Faculty of Physics of the University of Havana

