Abstract
(Bi0.5Na0.5)1-xBaxTiO3 were synthetized via the conventional solid-state reaction sintering method (considering x = 16 and 18 at%) and polarized under an electric field of 2 kV/mm. The pyroelectric behaviour of the studied samples has been analysed by the static method, from the temperature dependence of the pyroelectric current. The figures of merit FV, FD, Fi and FE were investigated in a wide temperature range. The composition with x = 18 at% showed better results than that of x = 16 at% and other reported ceramic systems, especially for FV and FE parameters. A high thermal stability through the studied temperature range was obtained, which is a relevant behaviour for applications involving high-temperature sensors. The results have suggested that (Bi0.5Na0.5)1-xBaxTiO3 is a suitable candidate for pyroelectric sensors and energy harvesting applications.
References
[1] K. Uchino, Lead-Free Piezoelectrics, Eds. S. Priya and S. Nahm, Chapter 17 (Springer, New York, 2012), pp. 511.
[2] I. Coondoo, N. Panwar and A. Kholkin, J. Adv. Dielect. 3, 1330002 (2013).
[3] S. Supriya, Coord. Chem. Rev. 479, 215010 (2023).
[4] R. W. Whatmore, J. Appl. Phys. 133, 080902 (2023).
[5] H. He. X. Liu. E. Hanc, C. Chen, H. Zhang and L. Lu, J. Mat. Chem. C 8, 1494 (2020).
[6] A. Balakt, C. Shaw and Q. Zhang, Ceram. Int. 43, 3726 (2017).
[7] F. Guo, B. Yang, S. Zhang, F. Wu, D. Liu, P. Hu, Y. Sun, D. Wang and W. Cao, Appl. Phys. Lett. 103, 182906 (2013).
[8] J. Abe, M. Kobune, T. Nishimura, T. Yazaw and Y. Nakai, Integr. Ferroel. 80, 87 (2006).
[9] B. R. Moya, A. C. Iglesias-Jaime, A. C. Silva, A. Pelaiz-Barranco and J. D. S. Guerra, J. Appl. Phys. 135, 164106 (2024).
[10] A. C. Iglesias-Jaime, T. Yang. A. Pelaiz-Barranco and J. D. S. Guerra, Rev. Cub. Fis. 39, 33 (2022).
[11] H. Li, C. Bowen and Y. Yang, Adv. Funct. Mater. 31, 2100905 (2021).
[12] C. R. Bowen, J. Taylor, E. LeBoulbar, D. Zabek, A. Chauhan and R. Vaish, Energy Environ. Sci. 7, 3836 (2014).
[13] D. Zhang, H. Wu, C. R. Bowen and Y. Yang, Small 17, 2103960 (2021).
[14] S. B. Land and D. K. Das-Gupta, Handbook of advanced electronic and photonic materials and devices, Chapter 1: Pyroelectricity: Fundamentals and applications, (Academic Press, 2001).
[15] S. B. Lang, Phys. Today 58, 31 (2005).
[16] S. B. Lang, Source Book of Pyroelectricity (Gordon and Breach, Chience Publishers Inc., New York, 1974).
[17] X. Jian, K. Kim, S. Zhang, J. Johnson and G. Salazar, Sensors 14, 144 (2014).
[18] S. M. Zeng, X. G. Tang, Q. X. Liu, Y. P. Jiang, M. D. Li, W. H. Li and Z. H. Tang, J. Alloy. Compd. 776, 731 (2019).
[19] M. Sharma, V. P. Singh, S. Singh, P. Azad, B. Ilahi and N. A. Madhar, J. Electron. Mater. 47, 4882 (2018).
[20] H. Wei and Y. Chen, Ceram. Int. 41, 6158 (2015).
[21] K. S. Srinkanth and R. Vaish, J. Eur. Ceram. Soc. 37, 3927 (2017).
[22] S. Patel, A. Chauhan, S. Kundu, N. A. Madhar, B. Ilahi, R. Vaish and K. B. R. Varma, AIP Advances 5, 087145 (2015).
[23] K. Srikanth, S. Patel and R. Vaish, Int. J. Appl. Ceram. Technol. 15, 546 (2018).
[24] S. T. Lau, C. H. Cheng, S. H. Choy, D. M. Lin, K. W. Kwok and H. L. Chan, J. Appl. Phys. 103, 104105 (2008).
[25] J. D. S. Guerra, A. Pelaiz-Barranco, A. C. Silva, F. Calderón-Piñar and A. Iglesias-Jaime, Ferroelectrics 611, 138 (2023).
[26] P. Qiao, Y. Zhang, X. Chen, M. Zhou, G. Wang and X. Dong, Ceram. Int. 45, 7114 (2019).
[27] K. K. Bajpai, K. Sreenivas, A. K. Gupta and A. K. Shukla, Ceram. Int. 45, 14111 (2019).
[28] A. Thakre, A. Kumar, S. Hyun-Cheol, J. Dae-Yong and R. Jungho, Sensors 19, 2170 (2019).
[29] X. Liu, D. Xu, Z. Chen, B. Fang, J. Ding, X. Zhao and H. Luo, Adv. Appl. Ceram. 114, 436 (2015).
[30] M. Aggarwal, M. Kumar, R. Syal, V. P. Singh, A. K. Singh, S. Dhiman and S. Kumar, J. Mater. Sci.: Mater. Electron. 31, 2237 (2020).
[31] R. Sun, J. Wang, F. Wang, T. Feng, Y. Li, Z. Chi, X. Zhao and H. Luo, J. Appl. Phys. 115, 074101 (2014).
[32] K. S. Srinkanth, V. P. Singh and R. Vaish, Int. J. Appl. Ceram. Techn. 15, 140 (2018).

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Copyright (c) 2025 Cuban Physical Society & Faculty of Physics of the University of Havana