Effects of Coherence and Domain Walls on Diffraction Profiles in Rare-Earth Doped PbTiO₃
PDF

Keywords

X-ray diffraction
microstructure
Crystal defects
Fourier analysis
Ferroelectric materials

How to Cite

(1)
Effects of Coherence and Domain Walls on Diffraction Profiles in Rare-Earth Doped PbTiO₃. Rev. Cubana Fis. 2025, 42 (2), 96-102.

Abstract

The paper presents a study concerning the coherence and domain wall effects on the profile of selected X-ray diffraction (XRD) peaks from the ferroelectric system Pb0.92Ln0.08TiO3 (Ln3+ = La3+, Dy3+). The analysis focuses on the hkl-dependent broadening and asymmetry of certain diffraction peaks. The study was conducted using a diffraction model evaluated with experimentally determined parameters from XRD and Transmission Electron Microscopy (TEM). The results show that both coherence effects and domain wall scattering contribute significantly to peak asymmetries and diffuse intensity between (h00)/(00h) doublets. The results also show that these effects are sensitive to domain size being more pronounced in lower-order reflections. The choice of dopant directly impacts microstructural parameters. The study highlights the complexity of quantifying ferroelectric microstructures alone from diffraction data alone.

PDF

References

[1] Pramanick, A. D. Prewitt, J. S. Forrester, J. L. Jones, Criti. Rev. Solid State Mater. Sci. 37, 243 (2012).

[2] N. Floquet, C. M. Valot, M. T. Mesnier, J. C. Niepce, L. Normand, A. Thorel, R. Kilaas, J. Phys. III France 7, 1105 (1997).

[3] D. R. Taylor, I. P. Swainson, J. Phys.: Condens. Matter 10, 10207 (1998).

[4] L. Olikhovska, A. Ustinov, F. Bernard, J. C. Niepce, J. Phys. IV France 10, (2000).

[5] A. Hayward, E. K. H. Salje, Z. Kristallogr. 220, 994 (2005).

[6] H. Boysen, Z. Kristallogr. 220, 726 (2005).

[7] J. E. Daniels, J. L. Jones, T. R. Finlayson, J. Phys. D: Appl. Phys. 39, 5294 (2006).

[8] G. Catalan, A. H. G. Vlooswijk, A. Janssens, G. Rispens, S. Redfern, G. Rijnders, D. H. A. Blank, B. Noheda, Integrated Ferroelectrics 92, 18 (2007).

[9] H. Boysen, J. Phys.: Condens. Matter 19, 275206 (2007).

[10] Khoshnevisan, D. K. Ross, D. P. Broom, M. Babaeipour, J. Phys.: Condens. Matter 14, 9763 (2002).

[11] Y. U. Wang, Phys. Rev. B 76, 024108 (2007).

[12] Khoshnevisan, Physica C 468, 2187 (2008).

[13] J. Diao, et al., Phys. Rev. Mater. 4, 106001 (2020).

[14] Y. Mendez-González, A. Pentón-Madrigal, A. Peláiz-Barranco, S. J. A. Figueroa, L. A. S. de Oliveira, B. Concepción-Rosabal, Phys. B 434, 171 (2014).

[15] Peláiz-Barranco, Y. Méndez-González, D. C. Arnold, P. Saint-Grégoire, D. J. Keeble, J. Mater. Sci. 47, 1094 (2012).

[16] Y. Méndez González, "Análisis microestructural y estructural en el sistema ferroeléctrico PbTiO3 dopado con tierras raras", Tesis de maestría, Facultad de Física, Universidad de La Habana, Cuba, (2013).

[17] B. E. Warren, X-ray diffraction, Addison-Wesley (1969).

[18] P. R. Potnis, N.-T. Tsou, J. E. Huber, Mater. 4, 417 (2011).

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Copyright (c) 2025 Cuban Physical Society & Faculty of Physics of the University of Havana