Testing the Thin Capillary Model
PDF

Keywords

capillary
Jurin's law
column height
mean curvature

How to Cite

(1)
Testing the Thin Capillary Model. Rev. Cubana Fis. 2025, 42 (2), 120-123.

Abstract

We provide a detailed and accessible introduction to the exact theory of capillary phenomena in a cylindrical tube of finite radius. We demonstrate explicitly that Jurin's law always somewhat underestimates the height of liquid rise. The largest deviations occur for small contact angles. In the limiting case of a very large capillary radius, the true column height becomes independent of the radius and approaches a finite limiting value. The mean curvature of a real meniscus is a monotonically increasing function of the capillary radius. We argue that the force balance method is most appropriate for deriving Jurin’s law, whereas the exact capillary equation requires the use of the pressure balance method or the Helmholtz energy minimization procedure.

PDF

References

bibitem{1} Sai Liu, Shanpeng Li, and Jianlin Liua, ``Jurin’s law revisited: Exact meniscus shape and column height,'' Eur. Phys. J. E. textbf{41} (3),46 (2018).

bibitem{2} M. Á. Rodríguez-Valverde and M. T. Miranda, ``Derivation of Jurin's law revisited,'' Eur. J. Phys. textbf{32} (1), 49–54 (2011).

bibitem{3} L. D. Landau and E. M. Lifschitz, textit{Fluid Mechanics} (2nd Edition, Butterworth

Heineman, Oxford, 1971)

bibitem{4} G. A. Korn, and T. M. Korn, textit{Mathematical Handbook for Scientists and Engineers} (2nd Edition, Dover. Publications, New York, 2000)

bibitem{5} Y. Tang, S. Cheng, ``The meniscus on the outside of a circular cylinder: From microscopic to

macroscopic scales,'' J. Colloid Interface Sci. textbf{533}, 401-408 (2019).

bibitem{6} ] Oliphant T E 2021 NumPy: the fundamental package for scientific computing with Python

https://numpy.org/

bibitem{7}Virtanen P 2021 SciPy: the fundamental algorithms for scientific computing in Python https://

scipy.org/

bibitem{8} P. Concus, ``Static menisci in a vertical right circular cylinder,'' J. Fluid Mech. textbf{34} (3), 481–495 (1968).

bibitem{9} R. Finn, textit{ Equilibrium Capillary Surfaces. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]} (Vol. 284, Springer-Verlag, New York, 1986)

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Copyright (c) 2025 Cuban Physical Society & Faculty of Physics of the University of Havana